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r Background — use of ML in investment

= Rapid development of machine learning methods and ever rising use in
Investment analytics.

= Applications widespread in the investment universe
o Stock-market - equity price forecasting
o Cryptocurrencies
o Exchange rates
o And more ...

= Deployment of ML algorithms in real estate pricing
o Forecasting house prices (e.g. Sharma et al., (2024); Mora-Garcia et al.,
(2022)).
o Valuations

= Fewer applications in commercial real estate.



r Our research interest

= Assess the capacity of alternative ML algorithms for predicting
commercial prices (yields, capital growth).

= We study whether the success of ML algorithms differs by sector.

= Econometric/time series forecasting models are also used to compare
the forecasts with those obtained from ML methods.

= Also interested in gains from forecast combination (conventional models
& ML algorithms).



r Background to forecasting
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Target series — UK office yields
(net initial yields)
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r Methodologies

> ARIMA (Benchmark)

- Uses the autocorrelated pattern of data along with the duration of shocks
to predict; can include external information

» Regression model
> Elastic net linear regression models
- Regularised models; objective is prediction
» Random Forest Model: Two specifications:

= Internal determinants:
o 3-month forecasts: Lag 3 to Lag 15
o 6-month forecasts: Lag 6 to Lag 18

= All determinants:
o 3-month forecasts: Uses lag 3 of all variables as features.
o 6-month forecasts: Uses lag 6 of all variables as features.

Data set: About 30 variables are considered containing real economy,
monetary, financial, survey and real estate data series.



r A key task — forecast evaluation

= Forecast evaluation — what is our objective?
o Bias, dispersion (risk), direction, other?

= Real world (dynamic)

= Rolling samples



r The basic academic approach

_ ARIMAS Elastic Net | RE-Int RE-Ext

3-month forecasts

ME -0.008 -0.05 -0.06 0.01 -0.39
MAE 0.08 0.12 0.13 0.14 0.43
MSE 0.011 0.025 0.026 0.036 0.305
Ul 0.01 0.02 0.02 0.02 0.05
Dir. Fore 55.7% 73.8% 54.5% 59.7% 46.8%

6-month forecasts

ME -0.02 -0.07 -0.08 -0.04 -0.35
MAE 0.13 0.13 0.21 0.30 0.47
MSE 0.026 0.028 0.059 0.152 0.331
Ul 0.02 0.02 0.03 0.04 0.06
Dir. Fore 54.4% 71.4% 46.8% 50.6% 51.9%

ME: Mean error; MAE: Mean absolute error; MSE: Mean squared error; U1: Theil's U1
statistic; DirF: Success in predicting the direction of the yield movement three and six
months ahead correctly.



r Forecasts

Forecast made at end of November 2024 _

- 0
Office yield (%) 3-M Forecast (%) 6-M Forecast (%)

Jan-2025 -
D202 [Dec-2025] Mar-202%)
5.04

ARIMA 4.88 4.79
Regression 50 4.83*

model (4.75)**
Elastic Net [5.38] [5.51]
RF-internal [5.61] [6.34]
RF-external [5.19] [4.93]

Notes:
* Model excludes two employment variables
** Feb-2024 forecast (full model)



r Key take-aways

»  Traditional techniques perform well
»  Sample big enough to train ML algorithms?

>  Must target a specific forecast objective



(6-month ahead, based on regression model)
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r Peak predicted, slow to indicate yield decline
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Thank you
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